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The influence of interparticle magnetic interactions on the aggregate state of the system of isotropic ferrocol-
loidal particles is investigated. To describe the orientation state and the local structure of a colloid, we use
a combined numerical method, including direct modeling of translational Brownian dynamics of an aggregate
of particles, and an approximate description of their orientation state by the self-consistent method. To calcu-
late the contribution of magnetic interactions to the thermodynamic properties of a colloid, the thermodynamic
process of heating the Brownian ensemble is realized numerically. The magnetic additive to the free energy
and the chemical potential of a ferrocolloid have been determined. It has been found that the system of fer-
rocolloidal particles has critical points of the gas-liquid and gas-solid transitions and can be found in three
aggregate states.

Colloids of ultrasmall ferromagnetic particles have attracted attention because of their unique physicochemi-
cal properties. The properties and stability of ferrocolloids are strongly influenced by interparticle magnetic interac-
tions. Stability is provided by the thermal diffusion of particles, and its disturbance can be either local (aggregative
instability towards clustering [1]) or global (thermodynamic instability towards colloid splitting into high- and low-
concentration phases [2]). Development of a general enough theory of interrelated orientation and aggregative proc-
esses in a disperse subsystem of the ferrocolloid with regard for the diversity of properties of particles, liquids,
and stabilizing additives entails severe methodological difficulties. The methods of Brownian dynamics have certain
prospects. In [3], such an approach was used to study the problem of the existence in the colloid of isotropic sin-
gle-domain ferroparticles of the orientation state of dipole glass (the state in which the rotational diffusion of in-
dividual magnetic moments is frozen by the collective field of interparticle magnetic interactions without the
formation of a long-range orientation order). Numerical modeling of small ensembles of particles directly gives in-
formation on the orientation properties and local structure of the ferrocolloid [3]. The global structural transforma-
tions in the system of colloidal particles can be described in terms of the theory of phase transitions in the real
gas whose employment requires determination of the correlation magnetic additive to the thermodynamic potential
of the colloid. In the present paper, the method of computing thermodynamic experiment has been used. It has
been found that the disperse subsystem of the colloid of single-domain isotropic ferroparticles is characterized by
two critical points and, accordingly, by three aggregate states: gas, liquid, and solid.

Model of the Brownian Dynamics of an Aggregate of Interacting Isotropic Colloid Ferroparticles in
the Self-consistent Field Approximation. Let us formulate the salient points of the model used. We consider a
colloid ensemble of N homogeneously magnetized isotropic ferroparticles of radius a with magnetization Isb. The
system has two time scales, τB and τ0, characterizing, respectively, the external (mechanical) and internal (mag-
netic) rotational diffusion of the particle. The first time scale is determined by the heat-transfer fluid viscosity and
is 10−6 sec or more, and the second one is determined by the magnetic viscosity of the particle material and is
of the order of 10−9 sec. The difference between the characteristic times by a few orders of magnitude makes
practically impossible direct numerical simulation of combined Brownian dynamics of the particle and the moment,
but permits using the local equilibrium hypothesis according to which the magnetic moment of each particle is in
thermal equilibrium in the local magnetic field at all times. This assumption leads to the system of algebraic equa-
tions relating the effective values of the magnetic moments (averaged on the time interval τ0 << ∆t << τB) to the
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local fields at the particle centers. We use the traditional method for calculating the local field based [4] on the
cutting of a Lorentz sphere in the material. The local field acting on the trial dipole at the center of the sphere
is the sum of the external field H0, the field established in the nonmagnetic cavity by the homogeneously mag-
netized material surrounding it 4πI/3, and the field established by the dipoles located inside the sphere. In our
model, the particles are inside a sphere whose radius RL is determined by the volume concentration of particles c:
RL = α(N ⁄ c)1 ⁄ 3. The particle α is characterized by the radius vector of its center Rα, the effective moment Mα, and
the local field at the particle center Hα. Let Hβα be the dipole field β at the center of the particle α. We take
into account the mutual influence of the particles located at a distance smaller than a certain radius Ri (radius of
interaction). To decrease the influence of the boundary, we calculate the macroscopic magnetization i by averaging
over the particles whose centers are located in the central region of radius Ra ≤ RL − Ri − a (averaging radius). In-
troducing the designations mα = Mα ⁄ m0 (m0 = vIsb), i = I/cIsb, h = Hα ⁄ Isb, and rα = Rα/2a, we write the equa-
tions of magnetic state of the system of particles with a given spatial distribution in the following dimensionless
form [3]:
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Here Na is the number of particles inside the averaging sphere, sβα is the unit vector from the center of the particle
β to the center of the particle α, rβα is the distance between the centers of the particles α and β, indices enclosed in
parentheses and brackets denote the summation over the particles inside the sphere of interaction (rβα < ri) and the
sphere of averaging (rα < ra), respectively. The first equation in (1) expresses the Langevin law for the effective value
of the moment in the local field and represents the self-consistency condition. The solution of system (1)–(2) can be
obtained by organizing an iteration process 
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The Brownian dynamics of particles is described by the system of finite-difference equations

Rα (t + ∆t) = Rα (t) + b Fα (t) ∆t + (∆R)ran  , (3)

where b = 1 ⁄ (6πηa) is the particle mobility and (∆R)R is the random Gaussian shift with a zero mean and dispersion

s(∆R)ran
2
t = 6D∆t ,   D = kTb = 

2a
2

3τB
 .

The magnetic force on the particle α is the sum of the forces of its interaction with neighbors inside the sphere of
interaction:
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The mechanical barrier between the particles approaching each other is taken into account by the repulsive force that
comes into effect at Rβα < 2a, whereas the magnetic interaction between the overlapping particles is calculated at
Rβα = 2a. We assume
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Using the time scale (see [5]) t′=18η ⁄ (πIsb
2 ), we write Eq. (3) in the dimensionless form (τ = t ⁄ t′)

rα (τ + ∆τ) = rα (τ) + fα (τ) ∆τ + (∆r)ran ,     s(∆r)ran
2
t = ∆τ ⁄ λ , (4)

where

fα = fα
m

 + fα
 s
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 s

 .

We consider an ensemble consisting of 500 particles. The system is characterized by the concentration c
and the parameter of the dipole–dipole interaction λ. The quantity λ−1 represents the total radiation temperature in
units of the characteristic energy of the dipole interaction. In preliminary numerical experiments, the interaction radius
was chosen to be equal to the mean interparticle spacing,  ri = c−1 ⁄ 3, and the averaging radius ra = rL − ri − 0.5.

In [3], the model presented was used to study the orientation state and the local structure of a colloid.
Equations (1)–(2) for the orientation variables have in the zero external field a trivial solution with zero values of
the effective magnetic moments. Apparently, this solution describes the paramagnetic state. As established in [3],
on cooling to a certain temperature the trivial solution turns out to be unstable and the effective magnetic mo-
ments of particles acquire in the zero external field values other than zero, i.e., the effect of collective orientation
freezing arises. As a quantitative characteristic of this phenomenon, the root-mean-square value of the effective
magnetic moments q serves. With further cooling the freezing monotonically progresses and leads to the appearance
of a peak on the temperature curve of the initial magnetic susceptibility χ, which serves for molecular systems as

Fig. 1. Temperature dependences of the magnetic susceptibility χ and the ori-
entation freezing parameter q for the 5% ferrocolloidal system.

Fig. 2. Influence of the concentration on the character of the local structure of
the ferrocolloid in the case of λ = 3.5.
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a characteristic indication of the transition to the state of spin glass. The dependences χ(T) and q(T) calculated for
the case of c = 0.05 are given in Fig. 1. The change in the local structure of the colloid with increasing concen-
tration of particles for the case of λ = 3.5 is illustrated in Fig. 2.

Computer Thermodynamic Experiment. Phase Transitions in the System of Colloid Particles. The
phase portrait of the system of colloid particles in an incompressible liquid can be given by a set of isotherms
p(c) for the partial pressure or ϕ(c) for the chemical potential. Exactly these thermodynamic functions in the case
of division of the system into macroscopic regions with a different concentration that are at equilibrium with one
another hold the values constant along the system. The onset of instability of the homogeneous state is due to the
appearance of the dependence ϕ(c) maximum, and the colloid splits into phases corresponding to the thermody-
namically stable branches ((∂ϕ ⁄ ∂c)T > 0) of this dependence. The critical temperature and concentration values at
which separation begins are determined from the conditions
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∂c



 T

 = 0 ,   




∂2ϕ
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2
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 = 0 . (5)

In the case of numerical simulation of an ensemble of particles, one can directly calculate the correlation
magnetic addition to the internal energy E′ at given values of T, V, and N. This addition, however, is not a ther-
modynamic potential, since for this the internal energy should be known as a function of entropy. This method is
based on the relation [6]

E = − T
2
 

∂
∂T

 


F
T



 n

 ,

where n = N ⁄ V. Using the assumption of additivity of the magnetic addition and ignoring this relation in terms of tem-
perature at fixed n, we find

F
′
 (T, n) = T ∫ 

∞

T
E

′
 (T, n)

T
2

 dT . (6)

With the aid of (6), calculating in the computer experiment the value of E′ for various temperatures and fixed V and
N, one can determine the addition to the free energy.

The quantity E′ represents the total energy of interparticle magnetic interactions in the colloid in the state
of statistical equilibrium related to the volume V. The E′(T, n) algorithm is as follows. For the spatial and orien-
tation configurations of an ensemble of particles with given n and T existing at a certain instant of time, we find
the mean value of the interaction energy of dipoles on a per-particle basis U1(t). Then, using the successive con-
figurations arising in the process of Brownian motion in a fairly long time interval, we find the time average of
this quantity and calculate E′ according to E′ = nU

__
1. Iteration of this procedure with a gradual decrease in the tem-

perature permits obtaining a table of E′(T) values and determining the function F′(T) for a given value of n by
numerical integration of relation (6). Using various values of n, we find a table of values of the function
F′(n, T).

The magnetic interaction energy of particles α and β from the viewpoint of the self-consistent field model
is given by the relation

Uαβ = U0uαβ ,   uαβ = 
mr

α
mr

β

rαβ
3

 [eαeβ − 3 (eαsαβ) (eβsαβ)] ,   U0 = 
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 = 
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We determine the value of U1 by the relation 
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where the symbol between square brackets denotes, as before, the summation over the particles in the sphere of aver-
aging, the symbol in parentheses ( ) — the summation over the particles falling within both the interaction sphere of
the particle α and the averaging sphere (the factor 1/2 takes into account that the interaction of such particles in (7)
is taken twice), and the symbol in parentheses )( determines the summation over the particles located inside the inter-
action sphere of the particle α but outside the averaging sphere. For the internal energy density we have

E
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the correlation addition to the free energy is reduced to
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and the addition to the chemical potential of the colloid on a per-particle basis is
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The results of the calculation of the value of Fr
′  are reported in Table 1. The concentration dependence

ϕ′(c) for each value of λ was found from Eq. (8) numerically, for which the continuous function Fr
′ (c) was obtained

by means of cubic spline interpolation of the table values (with the addition of the value of Fr
′ (c = 0) = 0). We deter-

mine the total chemical potential density of the colloid on a per-particle basis as the sum ϕ = ϕ0 + ϕ′, where
ϕ0 is the chemical potential at eliminated magnetic interaction of particles for which we make use of the equation
of the gas state of Carnahan–Starling solid spheres [7] in the form

ϕ0 = kT 



ln c + 

4 − 4c + 3c
2
 − c

3

(1 − c)3




 + const . (9)

The thus-found aggregate of isotherms ϕ(c) (up to the constant in (9)) is depicted in Fig. 3. The data obtained make
it possible to draw several important conclusions about the state of the disperse system of the ferrocolloid. Note, first
of all, the simultaneous existence of two critical points at which the first and second derivatives of the chemical po-
tential with respect to the concentration go to zero simultaneously. This means that the system of particles under con-

TABLE 1. Relative Magnetic Correlation Addition (−Fr
′ ) to the Free Energy of the Colloid of Isotropic Ferroparticles

λ
c

0.01 0.02 0.03 0.04 0.06 0.08 0.10 0.15 0.20

1.0 0 0 0 0 0 4.2⋅10−5 5.1⋅10−4 3.3⋅10−3 0.012

1.5 0 6.2⋅10−4 0.002 0.005 0.015 0.029 0.045 0.088 0.118

2.0 1.4⋅10−3 0.007 0.022 0.040 0.075 0.105 0.133 0.200 0.243

2.5 0.009 0.036 0.066 0.100 0.158 0.203 0.243 0.308 0.348

3.0 0.040 0.084 0.127 0.169 0.230 0.275 0.312 0.392 0.438

3.5 0.057 0.140 0.205 0.256 0.320 0.360 0.390 0.460 0.516

4.0 0.110 0.220 0.300 0.347 0.390 0.424 0.456 0.529 0.588
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sideration can be found in three aggregate states. The critical isotherm of the gas–liquid phase transition is (approxi-
mately) the isotherm λ = 2.5, and that of the liquid–solid phase transition is the isotherm λ = 3.5. The corresponding
critical concentrations are c1

∗  C 0.03 and c2
∗  C 0.1. In the critical regions I and II, the homogeneous state of the system

of particles is unstable, and it breaks down into regions with a different concentration and different aggregate states.
The stability of the gas state of the system of interacting dipoles is explained by the high probability of

thermofluctuation disintegration of simple particle associations in the characteristic time of the addition of a new
particle. In the liquid aggregate state, as computer visualization shows, is the system of ferroparticles largely as-
sociated as is the system of molecules of normal liquids. Under overcooling the liquid phase condenses, leading to
a macroscopic breakdown of the colloid into regions of higher and lower concentrations that are at equilibrium
with one another. Using the Maxwell rule, we find that these concentrations are equal to 0.0045 and 0.044 for the
isotherm λ = 3.5 and 0.0016 and 0.038 for λ = 4. In the solid state, instead of the temporary particle associations
their stable spatial structure arises. Figure 2 gives a visual image on the colloid structure in different aggregate
states. In this figure, the concentration c = 0.02 corresponds to the region of instability I, the concentration
c = 0.04 approximately corresponds to the liquid-phase concentration (0.044) in the region of its equilibrium with
the particle gas, the concentration c = 0.08 corresponds to the liquid state in the region beyond the critical one, and
the concentration c = 0.1 corresponds to the critical concentration of the liquid–solid transition. As we see, in the
instability region I, fairly large but isolated particle associations arise, and their integration leads to macroscopic
breakdown of the colloid. The structure of the liquid phase is characterized by a practically continuous net in
which simple chains dominate, and on going to the solid state the chain structure gives way to the braid structure.
Throughout the temperature range under consideration the aggregate state of the carrier liquid is thought of as
being unaltered, the colloid as a whole remains liquid, and its physical properties sensitive to the state of the dis-
perse subsystem undergo changes. In particular, depending on the aggregate state of the disperse subsystem, the
colloid should exhibit Newton (gas state), nonlinear-viscous (liquid state) or viscoelastic properties, and thixotropy
(solid state). Exactly such types of rheological behavior were observed in the absence of an external field in the
"magnetite in kerosene" colloidal system when its concentration was changed by diluting it with the carrier liquid
[8]. Taking into account the results of the investigation of the dipole-glassy transition in [3], we arrive at the con-
clusion that the critical points of phase transformations lie in the region of the dipole-glassy state and the liquid
and solid systems are dipole glasses. The gas of the ferrocolloidal particles above the critical isotherm can be both

Fig. 3. Diagram of the state of the colloid of isotropic ferroparticles: curves
λ = 1, 1.5, ... are the chemical potential isotherms; c1

∗  and c2
∗  are the critical

points of phase transitions; I and II are the instability regions of the homoge-
neous state; the light region shows the gaseous state, the intermediate region
— the liquid state, and the dark region — the solid state.
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paramagnetic and dipole-glassy and below the citical isotherm, in equilibrium with the liquid phase, it can be only
paramagnetic.

Part of this work was financed by the Belarusian Republic Basic Research Foundation (project T99-246).

NOTATION

t, time; τ, dimensionless time; I, magnetization; m0, value of the magnetic moment of the particle; Na,
number of particles in the averaging sphere; sαβ, unit vector from the center of particle α to the center of particle
β; Rαβ, distance between the centers of the particles α and β; Fα, force acting on the particle α; η, viscosity; D,
diffusion coefficient; n, numerical concentration of particles; c, volume concentration; V, volume of the system; v,
particle volume; k, Boltzmann constant; T, temperature; E, internal energy; F, free energy; ϕ, chemical potential;
E′, F′, ϕ′, magnetic correlation additions. Subscripts: sb, solid body; L, Lorentz; i, interaction; a, averaging; m,
magnetic; r, relative; B, Brownian; s, surface; ran, random value.
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